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ABSTRACT

A key aspect of the search for Earth-like exoplanets with direct imaging is determining if the exoplanet is in the
habitable zone. Future direct imaging mission concepts such as HabEx and LUVOIR require an efficient cadence
of observations. Previous work shows that a minimum of three epochs, spanning more than half a period, can
determine orbital parameters to 10% for a single, circular orbit. Multi-planet systems may require a different
number and cadence of observations. We begin to address the multi-planet minimum observation approach
by considering only the astrometric data of exoplanet candidate objects in high contrast images. Existing
multi-planet trajectory matching libraries such as “Orbits For The Impatient” (OFTI) currently require users
to specify which point sources belong to which planet and assumes that the user has already matched true-
positive detections to planets. Additionally, planet matching needs to be considered when assessing the impact
of observation scheduling on trajectory estimation accuracy. To address this need for fitting orbits to multiple
objects with limited knowledge, we present an approach using a Monte Carlo study of different observation
schedules and planetary systems in which we have developed an algorithm to automatically match observations
to planets, and then check the accuracy of the matches. With a large number of cases, we can constrain the
number of observations and the spacing necessary to “deconfuse” the detections. We present preliminary planet
matching success rates for different observing schedules and planetary system parameters. We use these results
to assess the scope of the confusion problem and discuss potential mitigation strategies.

Keywords: Exoplanets, multi-planet systems, direct imaging, HabEx, LUVOIR, deconfusion, orbit fitting,
starshade, coronagraph

1. INTRODUCTION

The Habitable Exoplanet Observatory (HabEx)1 and the Large UV/Optical/Infrared Surveyor (LUVOIR)2 are
two concepts for potential future flagships that would be capable of directly imaging an Earth-like planet in
the habitable zone of nearby sun-like stars. The Roman Space Telescope’s Coronographic Instrument (CGI) is
a technology demonstration that will directly image exoplanets in reflected starlight. Roman CGI will initially
image gas giants discovered through radial velocity measurements, while HabEx and LUVOIR would perform
blind-search surveys to discover Earth-like planets.

HabEx and LUVOIR have three main goals regarding Earth-like exoplanets: discover them, acquire spectra
of them, and determine if they are in the habitable zone. The approach taken by HabEx and LUVOIR in the
observing scenario to achieve these goals is to perform the blind search survey in photometric detection to an
SNR of 7; then, once a discovery is made, to follow up with additional photometric observations until the orbit is
determined sufficiently to know if the planet is in the habitable zone (e.g. the semi-major axis, eccentricity, and
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inclination are known to 10% 1σ error); if the planet is in the habitable zone, then a spectral observation is taken.
The spectral observation for HabEx is taken to an SNR of 10 at a spectral resolution of 140 over an instantaneous
bandwidth from 300 nm to 1000 nm. The spectral observation for LUVOIR is a single 20% bandwidth, SNR
of 5, spectral resolution of 70, to determine the presence of water. Follow up spectral observations would be
taken in 20% sub-bands in the visible and near-infrared up to a spectral resolution of 140 and an SNR of
8.5. The observing scenarios of the various HabEx architectures (coronagraph-only, starshade-only, and hybrid
coronagraph with starshade) and the LUVOIR coronagraph are summarized in Table 2 of Morgan et al. 2021.3

An ideal observing scenario discovers and acquires spectra for as many Earth-like planets as possible with
as few observations as possible. Determining the minimum number of observations needed to determine the
planet’s orbit is important to maximize the number of Earth-like spectra. Previous work4 has shown that, for a
single planet with a circular orbit, three observations spanning more than half a period is the minimum number
of observations to determine the semi-major axis and inclination to better than 10% error. Nielsen showed that
four observations are the minimum for the general case, including highly eccentric systems (see Figure 3.1-2
of the HabEx Final Report1). This observing requirement was added to the Exoplanet Open-Source Imaging
Mission Simulator (EXOSIMS)5–15 yield simulation code and was used in the common comparison of HabEx and
LUVOIR performed by the Exoplanet Exploration Program’s Standard Definitions and Evaluation Team.16,17

But what if multiple planets are discovered around a star? Does this change the heuristic of the minimum
number of observations? Are additional observations needed in the effort to associate each dot in the image with
the appropriate planet? What is the minimum required number and ideal cadence of observations to determine
a planet’s semi-major axis, inclination, and eccentricity to 10% error?

Determining which dots in the image belong to which planet could be performed with a brute force approach
by inputting all permutations into an orbit fitting code, such as orbitize! which contains OFTI (Orbits for the
Impatient), a Markov-chain Monte Carlo rejection sampler. Rejection sampling is a high fidelity solution that
generates thousands to millions of simulated orbits that slowly converge to the best fit; it is best suited for a
small number of planets or systems. A faster, more efficient tool is needed to perform a Monte Carlo study on
thousands of systems to evaluate the impact of the number of observations and the cadence of observations, as
well as the sensitivity to inclination, number of planets, and, though not covered in this paper, inner working
angle (IWA), photometry, and utilizing null detections.

In this paper, we develop the framework and tools needed to perform a Monte Carlo study of thousands
of systems. The first part of this framework is an algorithm to assign the positions of planets from multiple
epochs to orbits. Section 2 discusses this algorithm as well as the sample synthetic planetary systems used and
the simulation methods for the Monte Carlo studies. The initial results of validating and characterizing the
performance of the deconfusion algorithm is presented in §3. The future work of improving both the deconfusion
algorithm and our simulations, using our simulation framework to study the question of observation frequency
and number, and further applications of this work are discussed in §4.

2. APPROACH

High contrast images of exoplanet systems are processed to determine the brightness and position of the exoplanet
candidates relative to the host star, such as in the Roman CGI data challenge.18 The astrometric position
measurements do not carry information regarding which detections correspond to which planets. If the number
of possible orbits is greater than the number of possible planets (see Fig. 1), we run into a “confusion” problem.

We approach the confusion problem by a Monte-Carlo study of synthetic planetary systems. The goal is to
assess the prevalence of cases in which it might be hard or impossible to determine which detection belongs to
which planet. In §2.1 we describe an algorithm that assigns detections to orbits. The algorithm is used in the
Monte-Carlo study to estimate the confusion rates for various parameters of planetary systems and observing
schedules. The systems used in the study are described in §2.2 and the procedure that generates the synthetic
detections is described in §2.3.
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Figure 1. The confusion problem in planet assignment: several planets are detected at various positions and epochs (left)
but which detection belongs to which planet is unknown. In some cases (center and right), detections can be assigned
to different planets (e.g., the detection at 1.2 years marked by a circle). The resulting orbits are drastically different but
“reasonable” for a solar-mass star in this example.

2.1 Deconfusion Algorithm

In this section we briefly describe the algorithm used for quick matching of astrometric data to orbits and orbits
to planets (a full description is available in reference19). The first phase of the algorithm relies on fast and precise
matching of 2D points to 3D Keplerian orbits. Unlike similar Monte-Carlo-based orbit-matching methods,20–22

our approach is semi-analytical and significantly faster, but is less accurate and does not currently provide error
estimates. The second phase consists of identifying self-consistent combinations of orbits and ranking them based
on how few planet groupings are used to describe the data.

2.1.1 Fast Orbit Matching

We assume astrometry consisting of Cartesian coordinates of planet candidates (“detections”) in the image plane
as well as their corresponding epoch times. The mass of the star is assumed to be precisely known. The goal of
orbit matching is to find all elliptical orbits with eccentricity below emax that pass within distance ∆rmax (or
time ∆tmax) of two or more detections.

In the first step, each pair and triplet of detections is matched with a Keplerian orbit. This is always possible
since Keplerian orbits have six parameters and each detection provides two constraints on those parameters.
Only orbits with eccentricity lower than emax are kept at this step. This can significantly reduce the total
number of orbits being analyzed.

In the second step, more detections are added to the orbits defined by the triplets of detections. We begin
with an orbit that matches three detections and find a fourth observation that lies within ∆rmax and ∆tmax of
the orbit. This procedure is repeated for all orbits that match three detections, then all orbits that match four
detections, etc. The output of this step is a list of all orbits that match two or more detections.

2.1.2 Deconfusion

The list of all orbits that match two or more detections is likely to contain multiple orbits that match the
same observations. Such orbits are mutually inconsistent since one detection should not be matched to multiple
different planet groupings (ignoring the rare cases in which planets happen to align behind one another). In the
deconfusion step, only combinations of orbits that do not share any detections are considered.

However, the number of self-consistent orbits is still large and some are clearly inferior to others. For example,
it is possible to match an orbit to each detection (one possible combination) or an orbit to each detection pair



(an exponentially large number of possible combinations). Yet, more “reasonable” combinations should contain
orbits that match a large number of detections.

The deconfuser simultaneously filters out inconsistent combinations of orbits and ranks them based on orbits
that match the most detections. This is done by first selecting the orbits that match the most detections,
then recursively proceeding with the remaining orbits and detections (excluding the ones matched to previously
selected orbits). Orbits that match the second largest number of detections are considered next, and so on. Note
that this approach may lead to multiple “highest ranking” combinations and may not include the combinations
with the smallest number of planets. The development of other rankings and tie-breaking mechanisms are an
item for future work.

2.2 Synthetic Planetary Systems

In order to investigate the nature of the confusion problem and assess our algorithm’s performance, we used a
large set of synthetic planetary systems and simulated example scenarios with various system parameters and
observing schedules. These synthetic systems were provided to us by Shannon Dulz who developed them for
exoplanet radial velocity and direct imaging yield research.23 The original set consists of 100,000 synthetic
systems, and in our simulations so far we have used samples from the first 1500 of these systems. In each of the
planetary systems, every planet has a defined mass and Keplerian elements, and every star has the same sun-like
mass.

The occurrence rates that informed the joint mass and semi-major axis probability distribution in this set
were sourced from Kepler mission data of planetary systems with F-, G-, and K- type stars.23 The planet
inclinations in each system were randomly sampled from a normal distribution with a mean of inclination of
the system and with a standard deviation of three degrees.24 The distribution of planet eccentricities in these
systems was initially a beta distribution25 which reflects statistics for largely single-exoplanet systems. However,
planets in multiple-exoplanet systems have been shown to have less eccentric orbits, so we scaled the initial
eccentricity distribution down by a factor of three in order to more accurately reflect known multiple-exoplanet
system statistics.26 The longitude of the ascending node, mean anomaly, and periastron angle were all randomly
sampled from uniform distributions between zero and 2π. We note that in the field of radial velocity, it is common
to fit planets sequentially, assuming no perceptible gravitational influence of the planets on one another. Given
the small number of observations per star for direct imaging, the same assumption about no planet-to-planet
orbit influences is adopted.

The systems were generated to be maximally packed with a majority of systems having between 25-40 planets,
which is much higher than current estimates for exoplanet system demographics.23 However, these systems were
created to be dynamically stable, with adjacent planets all satisfying the stability criterion of having a mutual
Hill radius less than nine using a circular orbit approximation.23 More rigorous dynamic stability of sample
systems is an item for future work. Since these systems had many more planets than were necessary for our
purposes, we took random samples of seven planets from each of these systems and simulated multiple scenarios
with between two and seven of those planets. Since we are particularly interested in studying the observation of
systems with potentially Earth-like exoplanets, we ensured that one planet in each of our system samples was
in the habitable zone of its sun-like star defined from 0.95 to 1.67 AU.16 Additionally, we excluded planets from
our samples which had a semi-major axis less than 0.67 AU in order to narrow our study to planets with orbits
at least 10% bigger than the HabEx IWA for a star at 10 parsecs. We also excluded planets with a semi-major
axis greater than 10 AU.

2.3 Simulations

The format of the synthetic systems includes a list of keplerian elements for each planet in every system. We
propagated the planet orbits to generate sample detections at multiple observation epochs, giving us simulated
astrometric data showing where the planets would be located in simulated two dimensional images, as depicted
in Fig. 1.

The coordinates of our sample detections in a 2D image plane along with their associated time stamps are
then inputted to our deconfusion algorithm, which returns ranked sets of mutually consistent orbits to match
detections to planets. The top ranked set describes the fewest number of planet groupings that can match all



of the input data. We simulate 1500 synthetic planetary systems in order to explore how often the algorithm
returns the correct solution, and how often there are multiple top-ranked solutions that are tied. These tied
spurious solutions are presently indistinguishable from the correct solution by our deconfusion algorithm, and
future work will be required in order to rank them. A summary of our Monte Carlo study is described by the
flow chart in Fig. 2.

Figure 2. The flow chart describes the step by step process for the simulation of one sample system in our Monte Carlo
study. Starting from the planet orbit parameters in each of our sample systems and observation scheduling parameters,
we then propagate the orbits to obtain our sample detections. Those time-stamped detections then are fed into our
deconfusion algorithm which ultimately returns the top candidate(s) for matching detections to planets.

In real direct imaging observations, there is non-trivial processing work to get from raw image data to the
astrometric data we would input into our deconfusion algorithm.18 We have simplified this process for our
purposes and simulated precise point-like planet detections without yet introducing astrometric uncertainty.
The incorporation of this astrometry error into our sample detections is a goal for future work. Our deconfusion
algorithm does, however, incorporate non-zero error tolerances ∆rmax and ∆tmax used to match additional points
to orbits defined by groupings of planet detections, as described in §2.1.1. The HabEx 1σ astrometry error is
expected to be 5 milliarcseconds (mas) due to the PSF size and a detection SNR of 5. In our simulations, we
define these tolerances to allow detections to be matched to an orbit if the detections are located in the image
with less than 10 mas (2σ expected HabEx astrometry error) displacement from the path of the orbit. At the
present stage in our work, we use this 10 mas astrometry error tolerance to calculate a timing error parameter
by approximating the time that the longest-period planets in our simulations would take to travel 10 mas in the
2D image plane for a face-on system. These simulation parameters are listed in Table 1. We use the parameter
emax = 1 in our deconfusion algorithm in order to avoid assumptions about prior eccentricity distributions.

We simulated the sample systems to be 10 parsecs away. To evaluate the effect of system inclination on our
algorithm’s performance, we sampled detections from each of our sample systems multiple times over a range of
orientations spanning from a “face-on” orientation (zero degree system inclination) to an “edge-on” orientation
(90 degree inclination). These orientations are illustrated in Fig. 3 and the system inclination values used in
our simulations are enumerated in Table 1. We also evaluated the effect of the number of planets, simulating
between two and seven planets per system.

Figure 3. The value of inclination we define for each system refers to the angle of rotation around the horizontal axis
from a “face-on” orientation at zero degrees to an “edge-on” orientation at 90 degrees.

We used two observing schedules in our simulations so far, as listed in Table 1. We sampled detections using
three or four observation epochs evenly spaced over the period of one Earth year. An Earth year was used in



order to approximate the period of an Earth-like exoplanet in the habitable zone around a sun-like star.

Our simulations are simplified so that planets are visible for detection at all times. There are many reasons
why some planets would not be visible in all direct imaging observations, including instrument IWA, planet size
and contrast with host star, and planetary illumination phase. We aim to incorporate these factors into our
simulations as part of our ongoing work, discussed in §4.

Table 1. For each unique combination of simulation parameters, 1500 sample systems are propagated, and their detections
fed into the deconfusion algorithm. Parameters varied in these trials include number of planets and system inclination, and
each of those simulations are repeated for both three and four evenly spaced observation epochs. The results are evaluated
in §3 to determine in what cases the deconfusion algorithm is able to return the correct planet grouping solutions, as well
as to determine when the correct solutions are identified exclusively without any spurious solutions with the same number
of planet groupings.

3. RESULTS

3.1 Number of Observations

For our first trial, we evaluated how our deconfusion algorithm performed with both three and four observation
epochs in the generalized case of three planets in a face-on system. We generated sample detections for three
and four observation epochs equally spaced over one Earth year for each of 1500 sample systems. The exact
parameters used in this trial are listed in the first row of Table 1.

In the three epoch case, the deconfusion algorithm found the correct solution for 99.3% of systems. For
95.5% of systems the correct solution was identified exclusively, meaning there were no other spurious top-
ranked solutions. In the four epoch case, the algorithm identified the correct solution for 100% of systems, and
in 98.9% of systems the correct solution was identified exclusively.

In this trial, the algorithm was largely successful and there was only a small percentage of sample systems
where further logic will need to be introduced in order to distinguish between the correct solution and other
spurious solutions. Since our sample detections are “idealized” without any astrometry error, we expect the
correct solution of planet groupings to be found by our algorithm every time, even if the algorithm cannot
presently distinguish between the correct solution and other top-ranked tied spurious solutions. The few cases
we found where the correct solution was not identified at all represent a numerical issue in the algorithm which
we are currently working to remedy.

There is a significant difference between the cases of spurious solutions when there are three versus four
observations of each planet. When there are three observations of each planet, there are often many combinations
of three points that can form an ellipse around the host star. When there are four observations, the algorithm
finds all triplets of points that form valid orbits, and then attempts to match a fourth point to the orbits defined
by those triplets. The fourth point has to be within a defined margin of error in order to be considered close
enough to the orbit to be considered a detection of the same planet. There is only a small likelihood that a



detection of one planet will fall close to the ellipse defined by three detections of a different planet. Therefore,
we see significantly more spurious solutions in the three epoch case than the four epoch case. This difference
becomes more apparent as we vary the system inclination and number of planets per system.

In addition to there being a higher percentage of systems where spurious solutions occurred in the three
epoch case, there were often more spurious solutions per system, as seen in Fig. 4. In the four epoch case, the
maximum number of spurious solutions for a given system was two, compared to the three epoch case where
there were systems with up to 13 spurious solutions.

Figure 4. In the trial varying number of observations (as described by the first row of Table 1), 1500 face-on 3-planet
systems were simulated and their sample detections were fed into the deconfusion algorithm for cases of three and four
evenly spaced observation epochs. With three epochs, the deconfusion algorithm identified the correct solution exclusively
with no spurious solutions 95.5% of the time, and 98.9% of the time in the four epoch case. These histograms describe
the remaining cases where spurious incorrect solutions were identified which cannot yet be distinguished from the correct
solution by the algorithm in its current state. Here we see that in the three epoch case, a higher percentage of sample
systems returned spurious solutions, and the average number of spurious solutions found per system is higher than in the
four epoch case. Note that in these histograms the bin for zero spurious solutions is not shown.

3.2 Number of Planets

We used the deconfusion algorithm to assess the spurious solution problem and its relationship to the number
of planets in a system. As listed in the second row of Table 1, we simulated 1500 systems each with 2, 3, 4, 5,
6, and 7 planets. This was repeated for both three and four observation epochs.

The results presented in Fig. 5 show that the deconfusion algorithm identifies the correct solution in nearly
all sample systems, but as we increase the number of planets per system, the prevalence of spurious solutions
also increases. In the three observation case, as we go from two to seven planets, the percentage of systems
where the correct solution was identified exclusively drops from 98.3% to 73.0%. It is worth noting that while
the same trend occurred in the four observation case, it was to a lesser extent; the percentage of systems where
the correct solution was identified exclusively only drops from 99.5% to 91.7%. The

The prevalence of spurious solutions when there are more planets highlights the need for future work to be
done introducing additional logic into the algorithm to rank these tied spurious solutions. This will help us
bridge the gap between the upper bound of how often the correct solution is identified at all (represented in
Fig. 5 by the solid green lines) and the lower bound of how often the correct solution is identified exclusively
(blue dotted lines).

3.3 System Inclination

Lastly, we used the deconfusion algorithm to assess the spurious solution problem as it relates to the inclination
of the system relative to the observer. A graphic of how the system orientation changes from face-on at zero



Figure 5. The trial varying number of planets per system is described in the second row of Table 1. The results are shown
here for both the three and four observation cases. We see that the deconfusion algorithm is able to identify the correct
solution nearly every time, but as we increase the number of planets, there are more systems with spurious incorrect
solutions which cannot yet be distinguished from the correct solution with the algorithm’s current logic. This trend is
more significant with three observations than with four observations. The few systems in the three observation case where
the algorithm did not find the correct solution at all represent a numerical issue in the algorithm which we are currently
working to remedy.

degree inclination to edge-on at 90 degree inclination is presented in Fig. 3. We ran 1500 sample systems through
the deconfusion algorithm for each value of system inclination, and repeated the experiment for three and four
evenly spaced observation epochs. The simulation parameters for this trial varying system inclination are listed
in the last row of Table 1, and the results are shown in Fig. 6.

For three observation epochs, the system inclination had a significant effect on the prevalence of spurious
solutions, with the correct solution being identified exclusively in only 63.3% of nearly edge-on systems with 85
degree inclination. In the four observation case, the same trend was present but not to the same extent, with
76.7% of systems with 85 degree inclination where the correct solution was identified exclusively. While in the
four observation case the correct solution was identified (even if not exclusively) for every single system, our
algorithm did not find the correct solution in some of the higher inclination systems with only three epochs due
to the aforementioned numerical issue in our algorithm that is in progress.

3.4 Summary

We presented an algorithm to match point sources of muti-panet systems taken at multiple epochs to planets.
We also presented an approach to simulate a large number of multi-panet systems for Monte Carlo studies. We
presented initial results for three and four evenly-spaced observations for a full range of inclination angles and
for for 2 to 7 planets in the system.

The simulations so far have shown us that the confusion problem for exoplanet direct imaging is significantly
increased when more planets are present in an image, and when systems are inclined at a high angle relative to
the observer. There is a higher rate of spurious solutions found which are not currently distinguished from the
correct solution but that may be improved with additional logic. This situation is improved by having at least
four detections of each planet in a system; in those cases, the correct solutions were identified exclusively at a
higher rate with fewer spurious solutions.



Figure 6. The trial varying system inclination is described in the last row of Table 1. Here results are shown for both
three and four observations. The deconfusion algorithm is mostly able to identify the correct solution, but for higher
inclination systems, we see a higher percentage of spurious incorrect solutions which cannot yet be distinguished from the
correct solutions with the algorithm’s current logic. We find fewer spurious solutions when using four instead of three
observations, but more work remains to enhance the deconfusion algorithm’s logic in order to close the gap between the
dashed blue curve and the solid green curve. The few systems where the algorithm did not identify the correct solution
at all represent a numerical issue in the algorithm which we are currently working to remedy.

In order to make concrete suggestions for observing strategies to mitigate the exoplanet confusion problem,
we will need to enhance our simulations by “un-idealizing” our sample detections and introducing further tie-
breaking methods into our deconfusion algorithm, as discussed in §4.

4. FUTURE WORK

To improve our understanding of the confusion problem and mitigate the issue of tied spurious solutions of planet
groupings, we need to make improvements to our deconfusion tool. We are actively working on resolving minor
numerical issues with the fast orbit matching step of our deconfusion algorithm so the correct solution can be
found in all sample cases. Another improvement for our deconfusion tool is the implementation of metrics for
distinguishing between top solutions which are currently tied in ranking because they contain the same number
of planet groupings. Additional ranking metrics being considered include sorting based on lowest error for planet
matching (when matching a fourth detection located within a defined error tolerance to an orbit defined by the
first three detections), and other heuristics such as favoring planet groupings which more closely match known
demographics for multiple-exoplanet systems such as low eccentricity and coplanarity of planet orbits.27

We can also enhance our understanding of how the confusion problem impacts scientific applications by
improving our sample systems and our simulation methods to more closely reflect realistic direct imaging condi-
tions. For instance, we can make our sample detections less “idealized” by introducing astrometric error as well
as including effects of planetary illumination phase, planet size and contrast with the host star, and instrument
IWA, including utilizing null detections due to IWA obscuration. We also plan to introduce more rigorous metrics
for dynamic stability in our sample systems.

These areas of improvement will enable us to build on our existing work and achieve our goal of using this
algorithm to investigate optimal observing strategies for mitigating the exoplanet confusion problem, considering



both uniform and non-uniform observing cadences. The optimal observing strategy investigation will inform a
heuristic for observing scenarios that can be used in potential future mission studies and can be incorporated
into the EXOSIMS mission modeling code.

A further application of the deconfusion algorithm is direct incorporation into EXOSIMS for use during the
dynamic observation-sequence simulation. The deconfusion algorithm provides a computationally fast approach
for dynamic orbit determination that is tenable for thousands of Monte Carlo mission simulations. As the
simulated mission progresses and each detection is made, the fast orbit matching algorithm can determine for
each exosystem when sufficient observations have occurred, e.g. when a planet is known to be in the habitable
zone or when all the discovered planets are known to be outside the habitable zone, and then the detection
observations can be stopped and the spectral characterization observations begun.

The optimal observing strategies and heuristics gained from these applications of the deconfusion algorithm
could lead to more effective observing schedules and potentially higher yields for potential future direct imaging
missions that encounter multi-planet systems.
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