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Figure 12 
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SYSTEM , METHOD , AND DEVICE FOR 
REAL - TIME SINKHOLE DETECTION 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims priority to , and the benefit 
of , U.S. Provisional Application No. 62 / 842,693 filed May 
3 , 2019 , the contents of which are incorporated by reference 
herein in their entirety . 

FIELD OF INVENTION 

[ 0002 ] Exemplary embodiments of the present disclosure 
relate to a system , method and device for real - time sinkhole 
detection . 

BACKGROUND 

1. Brief Description of the Art 
[ 0003 ] Sinkholes are defined as small closed depressions 
in karst , also known as dolines ( Waltham , Antony Clive , et 
al . " Glossary of Sinkhole Terminology . ” Sinkholes and 
Subsidence : Karst and Cavernous Rocks in Engineering and 
Construction , Springer , 2005 , pp . 31 ) . The composition and 
geology of karst landscapes are important variables to 
consider when determining the geography , topography , and 
formation of sinkholes . Karst landscapes are typically made 
up of limestone , a soft rock that dissolves in water . Lime 
stone is composed of calcium carbonate shells and skeletons 
from marine organisms , and thus , limestone commonly 
forms in warm , moist marine environments ( King , Hobart 
M. “ Limestone . ” Geology , Geology.com , geology.com/ 
rocks / limestone.shtml.In - text Citation ) . Regions with high 
limestone content can indicate regions that are particularly 
susceptible to sinkhole activity , such as Florida , USA . 
[ 0004 ] The six types of sinkholes are solution ( of bed 
rock ) , bedrock collapse , cap - rock collapse , cover collapse 
( also named dropout ) , suffosion , and buried ( Currens , 
James . “ Hypothesized Mechanism for the Initiation of Soil 
Cavities and Subsequent Cover - Collapse in Karst Terrain . ” 
Journal of Cave and Karst Studies , vol . 80 , no . 4 , 2018 , pp . 
172-180 . , doi : 10.4311 / 2016es0148 ) . In the United States , 
the most common type of sinkhole is the cover collapse 
sinkhole . Cover collapse sinkholes are caused by water 
tables dissolving limestone and bedrock foundations of a 
landscape . The water tables oftentimes flow through lime 
stone layers and create joints and small speleological fea 
tures , such as caves . Gradually , the void and cavity grow 
large enough to eventually collapse the overlying soil cover 
of clay and sand ( The Florida Speleological Society . “ Karst 
Terrain . ” Basic Central Florida Geology ) . The cover - col 
lapse sinkhole is often perceived as an event that occurs 
without warning , however , the formation itself is a gradual 
process . Oftentimes , the sinkhole formation process spans 
over several months to years . 
[ 0005 ] Cover collapse sinkholes occur frequently in 
Florida , USA , because of the vast limestone foundations in 
the landscape as well as weather and human activity that 
trigger sinkholes . Florida is underlain by thick sequences of 
limestone , dolostone , and sand . The combination of lime 
stone and sand is a major contributor in the formation of 
Florida's groundwater reservoir , as the difference in mesh 
creates a system that can easily trap groundwater ( Florida 
Geological Survey . “ Geologic Map of the State of Florida . ” 

Geology ) . This same characteristic , however , increases the 
amount of water tables involved in sinkhole formation . 
Throughout Florida , the large limestone tracts are not vis 
ible , but are instead covered by either a thin overburden of 
sand and clay or a thick overburden with water tables and 
piezometric surfaces , making sinkhole formation difficult to 
visualize . In Central Florida , the land is covered by thin to 
moderate overburden and has a well - developed karst land 
scape ( The Florida Speleological Society . “ Karst Terrain . " 
Basic Central Florida Geology ) . The landscape composition 
makes this particular region most susceptible to sinkhole 
activity compared to Northern Florida , as shown in a Figure 
entitled “ Florida Geologic Map Data ” from a Geographic 
Information Systems ( GIS ) database from the United States 
Geological Survey ( USGS ) ( Florida Geologic Map Data , 
Interactive Maps and Downloadable Data for Regional and 
Global Geology , Geochemistry , Geophysics , and Mineral 
Resources ; Products of the USGS Mineral Resources Pro 

mrdata.usgs.gov/geology/state/state.php?state=FL ) . 
Northern Florida mainly consists of cohesive clay - like sedi 
ments of low permeability and discontinuous carbonate 
beds . 

[ 0006 ] Sinkholes are naturally occurring events , however , 
they are oftentimes expedited or triggered by human activity . 
The impact of mining has been observed since 1950. In 
Shelby County , Alabama , from 1958 to 1973 , 1,000 sink 
holes developed from dewatering in carbonate rocks by 
wells , quarrying and mining operations and through surface 
drainage changes ( Currens , James . “ Cover - Collapse Sink 
holes in Kentucky , USA : Geographic and Temporal Distri 
bution . ” Carbonates & Evaporites , vol . 27 , no . 2 , June 2012 , 
p . 137. EBSCOhost , doi : 10.1007 / s13146-012-0097-2 . ) . 
Today , development practices such as groundwater pumping 
and construction drastically change the water table balances 
in the environment , thus altering water - drainage patterns . 
These practices can cause sinkhole collapses over time , and 
can even create larger cave formations ( USGS . “ Floridan 
Aquifer System . ” USGS , fl.water.usgs.gov/floridan/visual_ 
gallery.html ) . 
[ 0007 ] Due to increased developmental practices in areas 
with karst landscape , the amount of sinkholes occurring in 
Florida , USA , has been both costly and hazardous to public 
health ( Jones , Octavio . " Find Out What's Creating These 
Mysterious Holes . ” National Geographic , National Geo 
graphic , 15 Sep. 2017 , www.nationalgeographic.com/envi 
ronment / sinkhole / ) . The overall cost of sinkhole damage has 
totaled $ 1.4 billion between 2006 and 2010 ( Pearson , 
Michael . “ A Loud Crash , Then Nothing : Sinkhole Swallows 
Florida Man . ” CNN , Cable News Network , 5 Mar. 2013 , 
www.cnn.com/2013/03/01/us/floridasinkhole/index.html ) . 
The media has oftentimes deemed sinkholes as a seemingly 
" random ” event and because of the failures of current 
sinkhole detection techniques , many residents in areas 
underlain by limestone have been “ swallowed ” by sinkholes 
( Jones , Octavio . “ Find Out What's Creating These Myste 
rious Holes . ” National Geographic , National Geographic , 
15 Sep. 2017 , www.nationalgeographic.com/environment/ 
sinkhole / ) . In July of 2017 , a sinkhole approximately 225 
feet in diameter and 50 feet deep swallowed two houses in 
Pasco County ( Ellis , Ralph . “ Sinkhole Swallows Homes in 
Florida . ” CNN , Cable News Network , 15 Jul . 2017 , www . 
cnn.com/2017/07/14/us/sinkhole-florida/index.html ) . 
Although property damage is an issue , the concern for 
residents ' health is more urgent . In March of 2013 , a 
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in conductive and heterogeneous conditions ( i.e soils , clays , 
bedrocks , etc. ) The geology of karst landscapes where 
sinkholes occur are highly heterogeneous and conductive , 
making GPR inapplicable . 
[ 0009 ] In light of the aforementioned methods , there 
remains a need in the art to develop a system , method and 
device for real - time sinkhole detection that can monitor the 
process of sinkhole formation over a prolonged period of 
time , as opposed to independent , single frame detection , 
which only offers insight within a single frame of time . 

SUMMARY 

sinkhole 30 feet deep swallowed and killed Jeff Bush while 
he was sleeping ( Pearson , Michael . “ A Loud Crash , Then 
Nothing : Sinkhole Swallows Florida Man . ” CNN , Cable 
News Network , 5 Mar. 2013 , www.cnn . com / 2013 / 03 / 01 / 
us / floridasinkhole / index.html ) . 
[ 0008 ] Because of the prevalence of sinkholes in the 
United States today ( in regards to increasing human activity 
and threats to public health ) , especially in regions underlain 
with karst landscape such as Florida , an effective sinkhole 
detection technique is needed . The current techniques for 
sinkhole detection include Interferometric Synthetic Aper 
ture Radar ( INSAR ) , Light Detection and Ranging ( LIDAR ) , 
and Ground Penetrating Radar ( GPR ) . LIDAR data analyza 
tion transmits lasers to a target . The transmitted light is then 
reflected back to an instrument to be analyzed . InSAR varies 
with LIDAR by using multiple radar systems to calculate 
displacement , and it can therefore be applied to higher 
elevations through aerial transportation ( University of Texas 
at San Antonio . “ InSAR and LIDAR . ” Lecture 9. 30 Oct. 
2007 , San Antonio , Texas ) . Both InSAR and LIDAR tech 
niques measure surface displacement ; this displacement is 
measured consistently over time to form a sinkhole map , as 
shown in FIG . 5 of Kobal's article ( Kobal , Milan , et al . 
“ Using Lidar Data To Analyse Sinkhole Characteristics 
Relevant For Understory Vegetation Under Forest Cover 
Case Study Of A High Karst Area In The Dinaric Moun 
tains . ” Plos ONE 10.3 ( 2015 ) : 1-19 . Academic Search 
Premier . Web . 1 Dec. 2016 ) . Although the sinkhole map has 
high accuracy and can calculate the width , length , area , 
depth , and concentration of sinkhole activity , the maps 
oftentimes take several months to develop and come at a 
high cost because of the consistent need for aerial transpor 
tation and high penetrating radars and lasers ( Kobal , Milan , 
et al . “ Using Lidar Data To Analyse Sinkhole Characteristics 
Relevant For Understory Vegetation Under Forest Cover 
Case Study Of A High Karst Area In The Dinaric Moun 
tains . ” Plos ONE 10.3 ( 2015 ) : 1-19 . Academic Search 
Premier . Web . 1 Dec. 2016 ) . Additionally , InSAR and 
LIDAR detection methods are handicapped by the strong 
dependence on particular features of sinkhole formation , 
such as decompaction of underground materials , water table 
changes , dense vegetation growth , and structural changes in 
underground units , making the techniques less applicable to 
different types and formations of karst landscape ( Kobal , 
Milan , et al . “ Using Lidar Data To Analyse Sinkhole Char 
acteristics Relevant For Understory Vegetation Under Forest 
Cover Case Study Of A High Karst Area In The Dinaric 
Mountains . ” Plos ONE 10.3 ( 2015 ) : 1-19 . Academic Search 
Premier . Web . 1 Dec. 2016 ) . More importantly , in terms of 
sinkhole detection , the methods can only be applied to cover 
subsidence sinkholes , where a sinkhole is visibly and topo 
graphically formed over time . However , the techniques are 
largely inapplicable to cover - collapse sinkholes , which are 
the most common and dangerous sinkhole type in the United 
States , because this sinkhole type does not provide topo 
graphical indications of underground sinkhole formation . 
Ground Penetrating Radar ( GPR ) is a technology that uti 
lizes multi frequency electromagnetic surveys to visualize 
underground cavities ( Anchuela , Oscar Pueyo , et al . “ Inte 
grated Approach for Sinkhole Evaluation and Evolution 
Prediction in the Central Ebro Basin ( NE Spain ) . " Interna 
tional Journal of Speleology , vol . 46 , no . 2 , May 2017 , p . 
237. EBSCOhost , doi : 10.5038 / 1827-806X.46.2.2064 ) . The 
main drawback of GPR lies in its inability to detect cavities 

[ 0010 ] Disclosed is a system for real - time sinkhole detec 
tion comprising a plurality of measuring devices , a network 
system , and an analysis system . The plurality of measuring 
devices include a plurality of sensors , wherein each of the 
plurality sensors is configured to : record a first type of 
spatial data and a second type of spatial data ; process the 
first type and second type of spatial data by applying a first 
programmed filter to obtain a third type of spatial data ; 
process the third type of spatial data by applying a second 
programmed filter to obtain a fourth type of spatial data ; and 
compile the first , second , third and fourth type of spatial data 
into a data set . The network system is configured to elec 
tronically collect a plurality of the data sets from each of the 
plurality of sensors . The analysis system comprises an 
electronic database system and a server , wherein the server 
is configured to : electronically transmit the plurality of the 
data sets to the electronic database system ; query the data set 
from the electronic database system ; process the data set by 
applying a machine learning algorithm to generate a real 
time result about sinkhole detection ; transmitting the real 
time result to an interface system ; and update the electronic 
database system by transmitting the real - time result back to 
the electronic database system . 
[ 0011 ] In addition to one or more of the features described 
above , the first type of spatial data comprises accelerometer 
data , and the second type of spatial data comprises gyro 
scope data . 
[ 0012 ] In addition to one or more of the features described 
above , the third type of spatial data comprises attitude data . 
[ 0013 ] In addition to one or more of the features described 
above , the fourth type of spatial data comprises quaternion 
data . 
[ 0014 ] In addition to one or more of the features described 
above , each of the first programmed filter and the second 
programmed filter includes at least one of a Kalman filter 
and a Madgwick filter . 
[ 0015 ] In addition to one or more of the features described 
above , the server is configured to electronically transmit the 
plurality of the data sets to the electronic database system 
using the internet . 
[ 0016 ] In addition to one or more of the features described 
above , the electronic database system includes an online 
database system . 
[ 0017 ] In addition to one or more of the features described 
above , the real - time result is transmitted to the interface 
system through the internet . 
[ 0018 ] In addition to one or more of the features described 
above , the network system comprises a wireless sensor 
network system . 
[ 0019 ] In addition to one or more of the features described 
above , the machine learning algorithm is selected from the 
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group consisting of Artificial Neural Network , Naive Bayes 
Algorithm , K - Nearest Neighbor , Random Forest , and Sup 
port Vector Machines . 
[ 0020 ] Disclosed is a measuring unit comprising a protec 
tive containment cap , a power supply section , and a metallic 
mesh section . The power supply section is positioned 
between the protective containment cap and the metallic 
mesh section , and the metallic mesh section comprises a 
microcontroller and a sensor . 
[ 0021 ] In addition to one or more of the features described 
above , the metallic mesh section further comprises a water 
proof container in which the microcontroller and the sensor 
are positioned . 
[ 0022 ] In addition to one or more of the features described 
above , the metallic mesh section further comprises a power 
supply wire connecting the waterproof container to the 
power supply section . 
[ 0023 ] In addition to one or more of the features described 
above , the metallic mesh section is filled with limestone . 
[ 0024 ] Disclosed is a measuring device comprising plu 
rality of measuring units as recited above . Each of the 
plurality of measuring units is connected by an attachment , 
which allows to collect spatial data from different subterra 
nean locations . 
[ 0025 ] Disclosed is a method of detecting a sinkhole 
comprising : obtaining a measuring device comprising a 
plurality of measuring units each comprising a protective 
containment cap , a power supply section , and a metallic 
mesh section , wherein the power supply section is posi 
tioned between the protective containment cap and the 
metallic mesh section , the metallic mesh section comprising 
a microcontroller and a sensor , wherein each of the plurality 
of measuring units is connected by an attachment configured 
to collect spatial data from different subterranean locations ; 
positioning the measuring device at a subterranean location ; 
collecting a plurality of data sets generated from the mea 
suring device through a network system ; electronically 
transmitting the plurality of data sets to an electronic data 
base system ; processing the plurality of data sets by apply 
ing a machine learning algorithm to generate a real - time 
result about sinkhole detection ; transmitting the real - time 
result to an interface system ; and updating the electronic 
database system by transmitting the real - time result back to 
the electronic database system . 
[ 0026 ] In addition to one or more of the features described 
above , the plurality of data sets include accelerometer data , 
gyroscope data , attitude data , and quaternion data . 
[ 0027 ] In addition to one or more of the features described 
above , the attitude data includes at least one of yaw , pitch 
and roll data . 
[ 0028 ] In addition to one or more of the features described 
above , the machine learning algorithm is selected from the 
group consisting of Artificial Neural Network , Naive Bayes 
Algorithm , K - Nearest Neighbor , Random Forest , and Sup 
port Vector Machines . 

[ 0031 ] FIG . 2 is a diagram showing the data transmission 
process in the network system . 
[ 0032 ] FIG . 3 shows the detailed structure of the machine 
learning system . 
[ 0033 ] FIG . 4 shows an exemplary embodiment of a 
sensor pole . 
[ 0034 ] FIG . 5 shows an exemplary embodiment of a 
metallic mesh section of a measuring unit . 
[ 0035 ] FIG . 6 is a diagram showing a physical model to 
simulate cover collapse sinkholes . 
[ 0036 ] FIG . 7 shows a cover collapse sinkhole simulation 
with the development of a self - supporting arch as a cavity 
forms underground . The clay ridges forming at the surface 
aid in the formation of the arch . 
[ 0037 ] FIG . 8 shows a cover collapse sinkhole simulation 
with large sinkhole formation in the center of the model . 
[ 0038 ] FIG . 9 shows a cover collapse sinkhole simulation 
with large sinkhole formation on the right side of the model . 
[ 0039 ] FIG . 10 shows release port outputs from the water 
tables flowing through the sinkhole model . 
[ 0040 ] FIG . 11 is table showing testing accuracy by apply 
ing the Neural Network Algorithm . 
[ 0041 ] FIG . 12 is table showing testing accuracy by apply 
ing the Naive Bayes Algorithm . 
[ 0042 ] FIG . 13 is table showing testing accuracy by apply 
ing the K - Nearest Neighbor Algorithm . 
[ 0043 ] FIG . 14 is table showing testing accuracy by apply 
ing the Random Forest Algorithm . 
[ 0044 ] FIG . 15 is table showing testing accuracy by apply 
ing the Support Vector Machines ( SVM ) Algorithm . 
[ 0045 ] FIG . 16 shows a Pugh matrix displaying the effec 
tiveness of the sensing device methodology . 
[ 0046 ] FIG . 17 is table showing testing accuracy by apply 
ing the Neural Network Algorithm with trilateration local 
ization methodology . 
[ 0047 ] FIG . 18-19 show the application of the trilateration 
algorithm to location prediction of future sinkholes in real 
time . 
[ 0048 ] FIG . 20 is table showing testing accuracy by apply 
ing the Random Forest Algorithm with trilateration local 
ization methodology 
[ 0049 ] FIG . 21 shows a sample acceleration data prior to 
Machine Learning Algorithm computation . 

DETAILED DESCRIPTION 

[ 0050 ] A detailed description of one or more embodiments 
of the disclosed apparatus and method are presented herein 
by way of exemplification and not limitation with reference 
to the Figures . 
[ 0051 ] The major objective of sinkhole detection is to 
provide consistent monitoring of underground water tables 
at an efficient rate while considering cost and time , and 
maintaining the accuracy of detection data . This same objec 
tive is shared by the Civil Engineering field through the 
Structural Health Monitoring System ( SHMS ) . SHMS uti 
lizes clusters of sensors and places the sensors throughout a 
man - made structure ( i.e building , bridge , etc. ) . The sensors 
can detect areas of stress and strain within the structure in 
real - time because of the system's advanced integration of 
sensors , data transmission , computational power , and pro 
cessing ability ( Balageas , Daniel , et al . Structural Health 
Monitoring . ISTE , 2006 ) . SHMS is a highly applicable 
system ; it has been applied to Reactor Containment Build 
ings to reduce potential nuclear catastrophes ( Jianguo , Zhou , 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0029 ] The embodiments will become more fully under 
stood from the detailed description and accompanying draw 
ings , which are given for illustration only , and thus are not 
limitative of the present embodiment , and wherein : 
[ 0030 ] FIG . 1 is a schematic diagram of a system for 
real - time sinkhole detection according to an exemplary 
embodiment of the invention . 
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1378. , 

et al . “ A Wireless Monitoring System for Cracks on the 
Surface of Reactor Containment Buildings . ” Sensors 
( 14248220 ) , vol . 16 , no . 6 , June 2016 , p . 1. EBSCOhost , 
doi : 10.3390 / s16060883 ) as well as to aircrafts to predict and 
monitor damage ( Krishnaswamy , Sridhar . “ Structural Health 
Monitoring for Life Management of Aircraft . ” SHM System 
for Composite Structures . The Joint Advanced Materials and 
Structures Center of Excellence ) . 
[ 0052 ] The Wireless Sensor Network ( WSN ) is a commu 
nication system between sensors and is commonly applied to 
SHMS . WSN can be used in monitoring and controlling 
parameters in field locations where sensor networks may be 
implemented ( Jaladi , Aarti Rao , et al . “ Environmental Moni 
toring Using Wireless Sensor Networks ( WSN ) Based on 
TOT . ” International Research Journal of Engineering and 
Technology ( IRJET ) , vol . 4 , no . 1 , January 2017 , pp . 1371 

www.irjet.net/archivesN4/il/IRJET-V411246.pdf ) . 
WSN allows data to be viewed in real time via wireless 
connection or access to a database cloud . The network is 
oftentimes applied to environmental monitoring systems , 
such as earthquake detection systems , since the efficient 
communication between the sensor network and the acces 
sible database allows for risk mitigation during disastrous 
events ( Michelini , Alberto , et al . “ The Italian National 
Seismic Network and the Earthquake and Tsunami Moni 
toring and Surveillance Systems . ” Advances in Geosciences , 
vol . 43 , September 2016 , pp . 31-38 . , doi : 10.5194 / adgeo - 43 
31-2016 ) . The Italian National Seismic Network , consisting 
of over 400 stations throughout Italy with GPS receivers , 
seismic sensors and accelerometers , communicates all data 
to a base station in Rome via WSN and SHMS . At this base 
station , the process of data analysis is initiated and earth 
quake and tsunami warnings are either triggered or removed . 
The accuracy of the data provided by SHMS paired with the 
real - time data analysis allows for a “ shake ” map , which can 
detect an earthquake's epicenter , to be created within min 
utes , as shown in FIG . 1 of Michelini's publication ( Mi 
chelini , Alberto , et al . “ The Italian National Seismic Net 
work and the Earthquake and Tsunami Monitoring and 
Surveillance Systems . ” Advances in Geosciences , vol . 43 , 
September 2016 , pp . 31-38 . , doi : 10.5194 / adgeo - 43-31 
2016 ) . The effectiveness of WSN and SHMS within Italy's 
National Seismic Network support its applicability to other 
environmental detection systems , such as sinkhole detection 
systems . 

[ 0053 ] In conjunction with WSN , the Internet of Things 
( IoT ) is oftentimes applied to create a user - friendly inter 
face . IoT is the network of devices connected to the Internet 
and transmitting data . The integration of IoT with a sensor 
network allows for widespread connectivity and data secu 
rity ; data can be stored in real - time to a database cloud , 
which can then be accessed by users without compromising 
the accuracy or efficiency of data transmission ( Atzori , 
Luigi , et al . “ The Internet of Things : A Survey . " Computer 
Networks , vol . 54 , no . 15 , 2010 , pp . 2787-2805 , doi : 10 . 
1016 / j.comnet.2010.05.010 ) . Furthermore , the application 
of the IoT can allow for a consolidation between the SHMS 
and WSN application through an easy to access , user 
friendly interface that displays the most prevalent data to 
users ( Yu , Wei , et al . “ A Survey on the Edge Computing for 
the Internet of Things . ” IEEE Access , vol . 6 , 2018 , pp . 
6900-6919 . , doi : 10.1109 / access.2017.2778504 ) . This data is 

oftentimes processed prior to display , and thus , IoT serves a 
large data analysis function within the overall sensor net 
work architecture . 
[ 0054 ] To ensure the accuracy of the real - time data pro 
cessing of sensor data from the network , Artificial Intelli 
gence can be applied through Machine Learning ( ML ) 
Algorithms . ML Algorithms extract and process information 
from large sets of data for classification and feature func 
tions ( Ghaoui , Laurent El , et al . “ Understanding Large Text 
Corpora via Sparse Machine Learning . ” Statistical Analysis 
and Data Mining , vol . 6 , no . 3 , 2013 , pp . 221-242 . , doi : 10 . 
1002 / sam.11187 ) . A major concern within the development 
of a sinkhole detection network is that external factors may 
disrupt or cause false positives in detection of sinkhole 
formation . These external factors include pumping systems 
that may provide movement signals to sensors . This poten 
tial source of error is maximized when data analysis is 
conducted manually . The application of Machine Learning 
can eliminate the threat of false positives as the large data 
processing capabilities of this AI technique can incorporate 
safeguards to properties that may falsely indicate sinkhole 
formation . Thus , data analysis is automated as opposed to 
manually completed . 
[ 0055 ] The objective of this project is to engineer a 
real - time method to detect sinkholes prior to collapse . The 
methodology behind this project is to implement a subter 
ranean sensor network that can detect the underground 
changes that contribute to sinkhole development . By apply 
ing technologies from the civil engineering and computer 
science field , a novel interdisciplinary sinkhole detection 
method can be created . It is hypothesized that the system 
created through the application of civil engineering tech 
niques , the Internet of Things ( IoT ) , and Artificial Intelli 
gence will allow for the creation of a more successful 
sinkhole detection system compared to current techniques 
based on criteria of accuracy , efficiency , ease of implemen 
tation , cost , and real - time detection . 
[ 0056 ] The Engineering and Design Process incorporated 
in the development of this sinkhole detection method is 
described through three subsections : the design and devel 
opment of the sensor network , engineering the sensing 
device , and creating the physical model to simulate cover 
collapse sinkholes . 

The Design and Development of the Sensor Network 
[ 0057 ] Cover collapse sinkholes are created from dissolu 
tion of limestone and bedrock layers by water tables , and 
thus , if excessive water movement and dissolution is 
recorded , a sinkhole can potentially be predicted prior to 
collapse and can be monitored or filled by structural health 
officials . In order to record water movement , the accelera 
tion of sensors as well as the position of sensors are 
important as measures for changes in subterranean activity . 
An accelerometer is a sensor type that can provide these 
values through a gyroscope breakout board . The most com 
mon type of accelerometer is the MPU6050 accelerometer 
since it contains an embedded GY - 521 6 - axis breakout 
board . The sensor type was chosen for its open source codes 
and adaptability to open source hardware . 
[ 0058 ] The sensors were first calibrated and the offsets 
were incorporated into the program . Then , the data sets were 
programmed . The data sets programmed included the raw 
accelerometer data , raw gyroscope data , Yaw Pitch Roll 
( YPR ) angles , and Quaternion data . YPR has a center of 
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gravity and rotation ( Smithsonian National Air and Space 
Museum . “ Roll , Pitch , and Yaw . ” How Things Fly , 
howthingsfly.si.edu/flight-dynamics/roll-pitch-and-yaw ) , 
which provides the optimal measure for orientation . The 
orientation provided by YPR Angles is significant as it can 
provide vast ranges of data for underground water move 
ment relative to initial position , and thus , helps to maintain 
the accuracy of the dataset . The YPR angles and Quaternions 
were calculated through programmed filters that utilized 
applied mathematics and physics . Quaternions were utilized 
because YPR angles are susceptible to Gimbal Lock . Gimbal 
Lock is a phenomenon that creates parallel degrees of 
freedom within angular data and affects sensor data accuracy 

( Kou , Kit Ian , and Yong - Hui Xia . “ Linear Quaternion Dif 
ferential Equations : Basic Theory and Fundamental 
Results . ” Studies in Applied Mathematics , vol . 141 , no . 1 , 
2018 , pp . 3-45 . , doi : 10.1111 / sapm.12211 ) . By applying the 
complex plane through Quaternion calculations , Gimbal 
Lock occurrences can be mathematically detected . The raw 
accelerometer and raw gyroscope data were passed through 
a programmed mathematical filter to output the YPR Angles 
and Quaternions . YPR angles were determined through a 
complementary high and low pass filter which integrated the 
gyroscope data and derived the accelerometer data . This 
filter provided a YPR value for each axes of the angle . The 
architecture of the complementary filter is shown as follows . 
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[ 0059 ] The Quaternion data was converted from the YPR angle data through the application of linear algebra and 
rotational matrices . Quaternions have four axes because the 
data incorporates the complex plane . The mathematical 
conversion is shown as follows . 

was programmed to display the last outputted data set . The 
entirety of the data set can be accessed with MySQL , which 
is wirelessly connected to the sensor network through this 
architecture . 
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Engineering the Sensing Device 
[ 0064 ] To prototype this system , a sensor pole was created 
in which the accelerometer was embedded into the device . 
A sensor pole structure was the optimal device for imple 
menting the sensor network because the layering effect 
allowed for a three dimensional analysis of the subterranean 
profile based on depth and planar location . The structure 
specifies the location when there is subterranean activity , 
making the ease of action highly favorable and applicable . 
The sensor pole was created through sections of repeatable 
structure ; each section had a protective containment cap , a 
power supply , and a metallic mesh . This design is shown in 
FIG . 4 . 
[ 0065 ] The metallic mesh section contained the microcon 
troller and sensor components . The metallic mesh portion of 
the sensing device is shown in FIG . 5. The microcontroller 
and sensor were placed into a waterproof container and the 
power supply was wired outwards into a containment sub 
section . The tension of the power supply was held with a 
solid limestone piece . The chemical component was intro 
duced through the application of limestone , which dissolves 
under acidic conditions ( calcium carbonate , the principal 
component of limestone , is slightly soluble in acidic solu 
tions ) . The concept behind this prototype is that as ground 
water and acidic rain erodes and dissolves the limestone 
tracts that underlay karst landscape , the limestone within the 
sensor pole will also dissolve . The mesh acts as a semiper 
meable membrane and allows for the acidic solution to pass 
through , but prevents larger rocks ( that may have been the 
product of gradual erosion ) from damaging the device . The 
pole was designed such that the limestone could be supple 
mented if needed through the ground level . The accelerom 
eter is embedded within the limestone piece and when the 
limestone is dissolved , the accelerometer will be free to 
oscillate within the fixed netted area . The accelerometer 
moves and detects changes within the sensor outputs as a 
direct result from the empty cavity space that now allows for 
water tables to freely flow through . When a large cavity has 
formed , the sensor data will have changed significantly 
through all the sensors within the sensor network ( derived 
from depth component of sensor pole ) . Through this design , 
there are essentially two sensors at play ; one is chemical 
( limestone ) and the other is programmed ( accelerometer ) . 
[ 0066 ] The process of limestone dissolution can be 
described through the following reactions : 

CACO3 + H2O + CO2 Ca ( HCO3 ) 2 

sensors to 

[ 0060 ] These conversions were incorporated into the over 
all programming of each sensor . Through this incorporation , 
the raw accelerometer and gyroscope data was converted in 
real - time . 
[ 0061 ] Within the network , multiple sensors are connected 
to a single microcontroller . This practice is heavily favored 
since this can greatly reduce communication transfer over 
load / “ traffic ” and is much more cost effective than assigning 
one microcontroller to each sensor . The sensor network was 
developed to connect all single 
12Ccommunication line and microcontroller . This was 
achieved by utilizing the two bus lines of the MPU 6050 
sensor . The two addresses are for registers Ox68 and 0x69 
( ADO low and high , respectively ) . The Ox69 line was pulled 
low while the Ox68 was communicating data through the 
line and the sensor data was communicated through a code 
iteration . This process is shown in FIG . 2 . 
[ 0062 ] The Machine Learning Algorithm architecture 
included preprocessing , optimal feature , and classifier lay 
ers . A classifier was first run through the raw data , in which 
sensor data from a single location was compiled into a CSV 
file . Then , various ML algorithms were run with this data . 
The data was split with 60 % training , 20 % validation , and 
20 % testing . The ML algorithms computed were the Arti 
ficial Neural Network , Naive Bayes Algorithm , K - Nearest 
Neighbor , Random Forest , and Support Vector Machines 
( SVM ) . These are supervised ML algorithms . After this 
process was completed , the machine learning algorithms 
could compute predictions for sinkhole detection occur 
rences based on real - time sensor data outputs . Thus , data 
analysis is computed in real - time . The ML algorithms 
allowed for complete system automation of the sensor 
network . The overall architecture of the ML is shown in FIG . 
3 . 
[ 0063 ] The application of the Internet of Things ( IoT ) used 
a wireless architecture . The architecture involved the pro 
gramming of a PHP server to transmit the data from the 
sensor network in real - time to a MySQL online database . 
The My SQL database then requested PHP queries and used 
and transmitted the last recorded data entry / output to a 
webpage . The webpage was a user - friendly interface that 

a 

H2O + CO2 ? H2CO3 

CaCO3 + H2CO3 ? Ca ( HCO3 ) 2 ( soluble ) 

[ 0067 ] Carbonic Acid ( H2CO3 ) is the primary agent dur 
ing limestone dissolution . Limestone is a sedimentary rock 
with high Calcium Carbonate ( CaCO3 ) content . Hydrogen 
ions give natural rain water a slightly acidic pH value . In 
regions with high industry and pollution , rain water becomes 
overly acidic . This overcomes the buffering capacity of 
groundwater and changes the equilibrium of the groundwa 
ter system ( Hanshaw BB , Back W , and Rubin M. “ Carbonate 
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tributes to the dangerous capacity for cover - collapse sink 
holes to form in karst . This process is capitalized in the 
sensor device design ; the device is engineered to model the 
limestone dissolution process and thus , the density of sensor 
devices implemented can be very low and cost effective . 

equilibria and radiocarbon distribution related to groundwa 
ter flow in the Floridan Limestone aquifer , USA . ” Proceed 
ings of International Association on Science of Hydrology , 
Dubrovnik , 1965 , pp 601-614 ) . Once this equilibrium is 
disrupted , the limestone dissolution process becomes a 
continuous cyclic pattern and is expansive . When cavities 
form in a karst landscape , this property guarantees the 
existence of additional dissolved limestone ( Hanshaw B B , 
Back W , and Rubin M. “ Carbonate equilibria and radiocar 
bon distribution related to groundwater flow in the Floridan 
Limestone aquifer , USA . ” Proceedings of International 
Association on Science of Hydrology , Dubrovnik , 1965 , pp 
601-614 ) . The cyclic nature of limestone dissolution con 

Developing a Localization Methodology 
[ 0068 ] Using a True Range Multilateration ( Trilateration ) 
Methodology , a localization algorithm for sinkhole detection 
was derived . Since three sensing devices were implemented 
during experimentation , a trilateration methodology was 
used . To determine the radii of sensors , the point of con 
vergence was determined by Equation 1 . 
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Equation 1. Determining the radii of sensing device detection through a convergence 
point ( x , y ) . 
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[ 0069 ] The trilateration methodology ensured that as sens 
ing device radii intersected , the convergence point or over 
lapped area would indicate a predicted sinkhole location . 
The algorithms used to compute sinkhole area are shown in 
Equation 2 . 
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Equation 2. Deriving the overlapping area of the sensing device 
trilateration methodology . 
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[ 0070 ] The application of a trilateration localization meth 
odology was used to aid in real - time location prediction 
accuracy alongside the Machine Learning Algorithms . 
[ 0071 ] FIG . 1 is a schematic diagram of a system for 
real - time sinkhole detection according to an exemplary 
embodiment of the invention . The system 1 for real - time 
sinkhole detection 1 includes a subterranean sensor imple 
mentation system 2 , a network system 4 , an IoT online 
Database 6 , a machine learning system 8 , and a user - friendly 
display system 10 . 
[ 0072 ] The subterranean sensor implementation system 2 
comprises a plurality of measuring devices , in which a 
plurality of sensors are embodied to detect the movement of 
subterranean water and measure limestone dissolution . The 
raw data collected from sensors is programmed and generate 
a plurality of data sets , wherein each data set includes raw 
accelerometer data , raw gyroscope data , Yaw Pitch Roll 
( YPR ) angles , and Quaternion data . 
[ 0073 ] The programmed data sets then are transferred to 
the network system 4 through the process shown in FIG . 2 . 
The IoT techniques applied in the system is using a wireless 
architecture , which means a programmed PHP server is used 
in the system to process and transfer data from the network 
system 4 to the IoT online Database 6 in real time . The data 
sets then are stored in the IoT online database 6. The 
machine learning system 8 is run on the programmed PHP 

[ 0076 ] FIG . 3 shows the detailed structure of the machine 
learning system . The machine learning system 8 includes a 
preprocessing section , an optimal feature section , five 
machine learning algorithms , and a prediction fusion sec 
tion . The five machine learning algorithms include the 
Artificial Neural Network , Naive Bayes Algorithm , K - Near 
est Neighbor , Random Forest , and Support Vector Machines 
( SVM ) . 
[ 0077 ] FIG . 4 shows an exemplary embodiment of a 
sensor pole 9 , which comprises a plurality of measuring 
units . Each measuring unit includes a protective cap 10 , 
power supply section 12 , metallic mesh section 14. The 
power supply section is positioned between the protective 
containment cap 10 and the metallic mesh section 14 . 
Separate measuring units are connected through the attach 
ments 16 and 18 , and assembled into a sensor pole . 
[ 0078 ] FIG . 5 shows an exemplary embodiment of a 
metallic mesh section 14 of a measuring unit . A metallic 
mesh section comprises a microcontroller 26 and a sensor 
28 , which are placed into a waterproof container 30. A power 
supply 22 is wired from waterproof container 30 outwards 
into a containment subsection 24. The containment subsec 
tion is filled with limestone . The tension of the power supply 
22 is held with the limestone . The chemical component is 
introduced through the application of limestone , which 
dissolves under acidic conditions ( calcium carbonate , the 
principal component of limestone , is slightly soluble in 
acidic solutions ) . The concept behind this prototype is that 
as groundwater and acidic rain erodes and dissolves the 
limestone tracts that underlay karst landscape , the limestone 
within the sensor pole will also dissolve . The metallic mesh 
20 acts as a semipermeable membrane and allows for the 
acidic solution to pass through , but prevents larger rocks 
( that may have been the product of gradual erosion ) from 
damaging the device . The pole was designed such that the 
limestone could be supplemented if needed through the 
ground level . The sensor 28 is embedded within the lime 
stone and when the limestone is dissolved , the sensor 28 will 
be free to oscillate within the fixed netted area . The sensor 
28 moves and detects changes within the sensor outputs as 
a direct result from the empty cavity space that now allows 
for water tables to freely flow through . When a large cavity 
has formed , the sensor data will have changed significantly 
through all the sensors within the sensor network ( derived 
from depth component of sensor pole ) . Through this design , 
there are essentially two sensors at play ; one is chemical 
( limestone ) and the other is programmed ( accelerometer ) . 

server . 

[ 0074 ] The machine learning system 8 includes a prepro 
cessing section , an optimal feature section , five machine 
learning algorithms , and a prediction fusion section . Before 
the five machine learning algorithms are capable to compute 
predictions for sinkhole detection occurrences in real time , 
they should be trained by a plurality of data sets . The 
training process works as follows . First , a plurality of data 
sets are queried from the IoT Online Database 6. Second , the 
data sets are split with 60 % training , 20 % validation , and 
20 % testing . Third , the five machine learning algorithms are 
run with the data sets . After the process is completed , the 
machine learning algorithms could compute predictions for 
sinkhole detection occurrences based on real - time sensor 
data outputs . When the system works , a classifier is first run 
through the data sets , in which the data sets from a single 
location is compiled into a CSV file . Then , five computed 
machine learning algorithms are run with the data and 
generate prediction results . The prediction results are trans 
ferred to the user - friendly display system 10 , which com 
prises a webpage that is programmed to display the pre 
dicted time and location of future sinkholes . In addition , the 
prediction results are transferred back to the IoT Online 
Database 6 to further update the database . 
[ 0075 ] FIG . 2 is a diagram showing the data transmission 
process in the network system . Within the network system 4 , 
multiple sensors are connected to a single microcontroller . 
This practice is heavily favored since this can greatly reduce 
communication transfer overload / “ traffic ” and is much more 
cost effective than assigning one microcontroller to each 
sensor . The sensor network was developed to connect all 
sensors to a single 12Ccommunication line and microcon 
troller . This was achieved by utilizing the two bus lines of 
the MPU 6050 sensor . The two addresses are for registers 
0x68 and Ox69 ( ADO low and high , respectively ) . The Ox69 
line was pulled low while the 0x68 was communicating data 
through the line and the sensor data was communicated 
through a code iteration . 

EXAMPLE 1 A PHYSICAL MODEL TO 
SIMULATE COVER COLLAPSE SINKHOLES 

[ 0079 ] A sinkhole was physically modeled to test the 
sensing device . The sinkhole model was created with mate 
rials typical for a sinkhole in Florida ( cover collapse sink 
hole type ) . A major part of the sinkhole formation process is 
the formation of a self - supporting roof with silt , clay , 
sandstone , gravel , limestone , and bedrock . When the arch of 
this formation loses strength , the sinkhole will collapse 
( Currens , James . " Cover - Collapse Sinkholes in Kentucky , 
USA : Geographic and Temporal Distribution . ” Carbonates 
& Evaporites , vol . 27 , no . 2 , June 2012 , p . 137. EBSCOhost , 
doi : 10.1007 / s13146-012-0097-2 ) . In order to replicate this 
sinkhole , materials of limestone , marble chips , sand , clay , 
and soil were utilized in the experiment . The limestone was 
concentrated in large tracts underground , as opposed to 
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layered structures of limestone ( modelling Central Florida 
geology ) . The surface of the sinkhole was maintained 
through the duration of the sinkhole formation process from 
the use of soil , clay , and marble chips in the upper layers of 
the simulation set - up . This allowed for the creation of a 
self - supporting arc . A gradual water force , which was intro 
duced and piped through rubber tubing , was used to simulate 
water tables . Sand was also utilized within the simulation 
because the Florida groundwater system contains large 
amounts of sand to trap surface water . The varying compo 
sitions / materials had different mesh profiles . The mesh pro 
files allowed for geophysics to be extensively considered 
during the development of the simulation . A dam was also 
built to allow for the water tables to flow through instead of 
rise and flood the model . This dam consisted of an arc and 
a circular drilled hole for drainage . The overall design of the 
physical model is shown in FIG . 6 . 
[ 0080 ] A total of 36 trials and simulations were run . The 
aforementioned model was rebuilt for each trial . The overall 
scale of the model was a 1.5 by 0.75 meter base with a 1 
meter height . 
[ 0081 ] FIG . 6 depicts a cover collapse sinkhole model 31 , 
which is composed of granite 42 , limestone 40 , sand 38 , soil 
36 , clay 34 , and marble chips 32. During each simulation , a 
total of three sensing devices 9 were deployed . 
[ 0082 ] The resulting sinkhole formations and dam output 
are shown in FIGS . 7-10 . The sinkhole simulations success 
fully maintained a cover for the duration of the sinkhole 
formation process until collapse . 

LIDAR techniques range from $ 10,000 to $ 20,000 per year 
for 3 meter to 5 meter resolution ( PTAC Petroleum Tech 
nology Alliance Canada . “ Study of Low Cost InSAR for 
SAGD Steam Chamber Monitoring . ” Look North Report , 
2015 , www.ptac.org/wp-content/uploads/2016/08/Final-Re 
port - 16 . pdf ) . Furthermore , Ground Penetrating Radar tech 
niques average at a cost of $ 14,000 ( US Radar . “ Ground 
Penetrating Radar Cost . ” US Radar , US Radar Inc. Subsur 
face Imaging Systems , 3 Nov. 2016 , www.usradar.com/ 
ground - penetrating - radar - cost / ) . The application zone ( sink 
hole type ) for the device is cover collapse , cover subsidence , 
and solution sinkholes . For InSAR and LIDAR techniques , 
the application zone is limited to subsidence sinkholes , 
while GPR can only be applied for sinkholes / voids in 
homogenous and nonconductive compositions . The time 
proximity of the device includes real - time detection , while 
InSAR / Lidar and GPR technologies are single frame detec 
tions . The detection range of the device is estimated to be 
one device per square mile , as compared to the range of up 
to 2,000 square kilometers from InSar / LIDAR and a 5-10 
foot depth range of GPR . The device has an optimized 
accuracy of 93 % , while InSAR / LIDAR is accurate only in 
subsidence sinkholes and GPR accuracy is limited to non 
conductive landscape applications . To initialize the device , 
in one non - limiting embodiment the sensing device can be 
implemented 10 meters underground . InSAR / LIDAR and 
GPR are non - invasive techniques , however , extensive pre 
liminary modelling is needed prior to implementation . For 
ease of use , the device is wirelessly connected such that once 
initialized , the sensing device can detect without manual 
requirements . InSAR / LIDAR requires consistent use of 
radar systems and GPR requires consistent movement along 
the applied landscape . 

EXAMPLE 2 - APPLYING MACHINE 
LEARNING ALGORITHMS TO PREDICT 
SINKHOLE OCCURRENCE IN REAL TIME 

EXAMPLE 3 - APPLYING MACHINE 
LEARNING ALGORITHM INTEGRATED WITH 
TRILATERATION LOCALIZATION METHOD 
TO PREDICT SINKHOLE OCCURRENCE IN 

REAL TIME 

[ 0083 ] The application of Machine Learning ( ML ) 
involved the algorithms of Artificial Neural Networks , 
Naive Bayes , K - Nearest Neighbor , Random Forest , and 
Support Vector Machines ( SVM ) . These algorithms were 
trained , validated , and tested for the final accuracy . 
[ 0084 ] For the Neural Network , various layer and neuron 
combinations were tested , and the most accurate combina 
tion was [ 10 , 50 ] in which the algorithm achieved 84 % 
testing accuracy , as shown in FIG . 11 . 
[ 0085 ] For the Naive Bayes algorithm , the algorithm 
achieved 69 % testing accuracy , as shown in FIG . 12 ( This 
Machine Learning Algorithm does not utilize layers ) . 
[ 0086 ] The K - Nearest Neighbor Algorithm ( KNN ) had a 
testing accuracy of 91 % . The lowest testing accuracy that 
the KNN algorithm had was 83 % at 31 K - nearest neighbors , 
as shown in FIG . 13 . 
[ 0087 ] For the Random Forest Algorithm , there was the 
highest testing accuracy out of the various ML algorithms 
programmed . The Random Forest algorithm obtained an 
optimal testing accuracy of 93 % when there were 120 
random forests . The lowest accuracy obtained was 92 % at 
10 and 200 trees , as shown from FIG . 14 . 
[ 0088 ] For the Support Vector Machines ( SVM ) Algo 
rithm , there was an optimized testing accuracy of 84 % . This 
is shown in FIG . 15 . 
[ 0089 ] A Pugh matrix displaying the effectiveness of the 
sensing device methodology is shown in FIG . 16 . 
[ 0090 ] The Pugh matrix has criteria of cost , application 
zone , time proximity , detection range , accuracy , ease of 
implementation , and ease of use . The cost of the sinkhole 
detection device is $ 150 per device , while InSAR and 

[ 0091 ] The Neural Network achieved the highest localiza 
tion prediction accuracy for sinkholes , with a testing accu 
racy of 99.12 % , as shown in FIG . 17 . 
[ 0092 ] The Trilateration Localization methodology was 
used alongside the Machine Learning Algorithm as a feature 
to further optimize prediction accuracy . The trilateration 
methodology , shown in FIGS . 18 and 19 , was able to detect 
both the source and location of future sinkhole occurrences 
prior to collapse . 
[ 0093 ] The Random Forest Machine Learning Algorithm 
achieved the highest time prediction accuracy for sinkholes , 
with a testing accuracy of 95.65 % , as shown in FIG . 21 . 
[ 0094 ] The data analysis and predictions were completed 
through Machine Learning Algorithms which processed the 
real - time sensor network data ( acceleration , gyroscopic ori 
entation , YPR angles , and Quaternion data ) . A sample of this 
data prior to Machine Learning Algorithm computation can 
be found in FIG . 22 . 
[ 0095 ] A novel , interdisciplinary sinkhole detection sys 
tem derived from civil engineering techniques , the Internet 
of Things ( IoT ) , and Artificial Intelligence more effectively 
detected underground cavities and sinkholes in karst land 
scape as compared to current methods . By engineering a 
subterranean sensor network , the sensing device was able to 
diagnose underground structural health changes in karst 
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which contributed to sinkhole formation in the future . Fur 
thermore , through an application of the Wireless Sensor 
Network , the Structural Health Monitoring System , and the 
Internet of Things , a user - friendly interface that had real 
time capabilities was created . 
[ 0096 ] The high accuracy of the supervised Machine 
Learning Algorithm indicates that the sensing device is 
effective in implementation . The Neural Network Machine 
Learning Algorithm achieved a 99 % localization accuracy 
and the Random Forest Algorithm achieved a 95 % time 
prediction accuracy . The high accuracy of the Machine 
Learning Algorithms provided for an effective real - time 
prediction model for impending sinkhole / cavity develop 
ment prior to the collapse of the void . 
[ 0097 ] By modeling the limestone dissolution process that 
causes sinkholes , the sensor network and sensing device was 
able to directly measure the rate of dissolution through the 
real - time Machine Learning prediction system . Since the 
limestone dissolution process is expansive and cyclic in 
nature , the implementation density for the sensing device is 
low and cost effective . This methodology provides detection 
with 99 % and 95 % accuracy respectively for location and 
time prediction of future sinkhole occurrences at less than 
5 % of the cost of current techniques ( current Ground Pen 
etrating Radar Techniques and InSar / LIDAR techniques 
range from $ 3,000 to $ 10,000 ) , as each sensing device costs 
around $ 150 to produce . While current techniques are lim 
ited to subsidence sinkholes ( sinkholes which topographi 
cally change in response to sinkhole formation over time ) , 
the methodology developed through this project is appli 
cable to the most dangerous type of sinkhole , the cover 
collapse sinkhole , among other types of sinkholes , including 
the subsidence sinkhole . The vast applicability of the sink 
hole methodology is derived from the sensing device design , 
which directly models the dissolution process that lies at the 
core of the formation of many sinkhole types . The current 
estimation for the implementation density of these sensing 
devices is one device per square mile of limestone bed . The 
United States Geological Survey ( USGS ) releases aquifer 
and limestone bed maps throughout the country and spe 
cifically within states such as Florida , USA . These maps 
indicate regions at risk to sinkhole activity . Since this 
detection methodology models the limestone dissolution 
process and utilizes a trilateration methodology , three sens 
ing devices on average must be implemented per limestone 
bed . In Central Florida , USA , limestone beds have surface 
areas of approximately 3 mile ?. Implementing three sensing 
devices per limestone bed would approximate to one sensing 
device per 1 mile ?, however this sensing density must be 
tested through large - scale simulations in the future . 
[ 0098 ] This project engineers the basis of a novel sinkhole 
detection methodology which is successful in implementa 
tion . In future work , a hypothetical example of the real - time 
sinkhole detection system might include scaling up sinkhole 
simulations and conducting field work for continued testing 
of the sensing device . Another embodiment of the invention 
might include a potential application to the Finite Element 
Method and the Discrete Element Method ( DEM ) to gen 
erate additional training data for sinkhole formation and 
limestone dissolution modeling . 
[ 0099 ] The application of interdisciplinary applied tech 
nologies within this project resulted in the creation of a 
novel design , system , method , and device to introduce to the 
sinkhole detection field . Currently , sinkhole development , 

specifically cover - collapse sinkhole formation , is an envi 
ronmental hazard on a global scale , affecting regions span 
ning from the Dead Sea coastal area to Florida , USA 
( Ezersky , Michael G. , et al . “ Overview of the Geophysical 
Studies in the Dead Sea Coastal Area Related to Evaporite 
Karst and Recent Sinkhole Development . ” International 
Journal of Speleology , vol . 46 , no . 2 , May 2017 , p . 277 . 
EBSCOhost , doi : 10.5038 / 1827-806X.46.2.2087 ) . An opti 
mal feature of the sensor network created through this 
project is its low - cost and open source software and hard 
ware applications . These open source devices and applica 
tions allow for the flexibility of WSN and SHMS in code 
without expensive costs and time constraints ( Salamone , 
Francesco , et al . “ An Open Source Low - Cost Wireless 
Control System for a Forced Circulation Solar Plant . ” Sen 
sors ( 14248220 ) , vol . 15 , no . 11 , November 2015 , p . 27990 . 
EBSCOhost , doi : 10.3390 / s151127990 ) . 
[ 0100 ] The interdisciplinary real - time detection system 
engineered through this project is novel in sinkhole detec 
tion and has the potential to not only reduce property 
damages , but more importantly , eliminate the public health 
threat that sinkholes pose . 
[ 0101 ] A number of alternatives , modifications , variations , 
or improvements therein may be subsequently made by 
those skilled in the art , which are also intended to be 
encompassed by the following claims . 
What is claimed is : 
1. A system for real - time sinkhole detection , the system 

comprising : 
a plurality of measuring devices including a plurality of 

sensors , wherein each of the plurality of sensors is 
configured to : 
record a first type of spatial data and a second type of 

spatial data ; 
process the first type and second type of spatial data by 

applying a first programmed filter to obtain a third 
type of spatial data ; 

process the third type of spatial data by applying a 
second programmed filter to obtain a fourth type of 
spatial data ; and 

compile the first , second , third and fourth type of 
spatial data into a data set ; 

a network system configured to electronically collect a 
plurality of the data sets from each of the plurality of 
sensors ; 

an analysis system comprising an electronic database 
system and a server , wherein the server is configured to : 
electronically transmit the plurality of the data sets to 

the electronic database system ; 
query the data set from the electronic database system ; 
process the data set by applying a machine learning 

algorithm to generate a real - time result about sink 
hole detection ; 

transmit the real - time result to an interface system ; and 
update the electronic database system by transmitting 

the real - time result back to the electronic database 
system . 

2. The system as in claim 1 , wherein the first type of 
spatial data comprises accelerometer data , and the second 
type of spatial data comprises gyroscope data . 

3. The system as in claim 1 , wherein the third type of 
spatial data comprises attitude data . 

4. The system as in claim 3 , wherein the attitude data 
includes at least one of yaw , pitch and roll data . 
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5. The system as in claim 1 , wherein the fourth type of 
spatial data comprises quaternion data . 

6. The system as in claim 1 , wherein each of the first 
programmed filter and the second programmed filter 
includes at least one of a Kalman filter and a Madgwick 
filter . 

7. The system as in claim 1 , wherein the server is 
configured to electronically transmit the plurality of the data 
sets to the electronic database system using the internet . 

8. The system as in claim 1 , wherein the electronic 
database system includes an online database system . 

9. The system as in claim 1 , wherein the real - time result 
is transmitted to the interface system through the internet . 

10. The system as in claim 1 , wherein the network system 
comprises a wireless sensor network system . 

11. The system as in claim 1 , wherein the machine 
learning algorithm is selected from the group consisting of 
Artificial Neural Network , Naïve Bayes Algorithm , K - Near 
est Neighbor , Random Forest , and Support Vector Machines . 

12. A measuring unit comprising : 
a protective containment cap ; 
a power supply section ; and 
a metallic mesh section , 
wherein the power supply section is positioned between 

the protective containment cap and the metallic mesh 
section , and wherein the metallic mesh section com 
prises a microcontroller and a sensor . 

13. The measuring unit as in claim 12 , wherein the 
metallic mesh section further comprises a waterproof con 
tainer in which the microcontroller and the sensor are 
positioned . 

14. The measuring unit as in claim 12 , wherein the 
metallic mesh section further comprises a power supply wire 
connecting the waterproof container to the power supply 
section . 

15. The measuring unit as in claim 12 , wherein the 
metallic mesh section is filled with limestone . 

16. A measuring device comprising a plurality of mea 
suring units as recited in claim 12 , wherein each of the 

plurality of measuring units is connected by an attachment 
which allows for collection of spatial data from different 
subterranean locations . 

17. A method of detecting a sinkhole , comprising : 
obtaining a measuring device comprising a plurality of 

measuring units each comprising 
a protective containment cap , a power supply section , and 

a metallic mesh section , wherein the power supply 
section is positioned between the protective contain 
ment cap and the metallic mesh section , the metallic 
mesh section comprising a microcontroller and a sen 
sor , wherein each of the plurality of measuring units is 
connected by an attachment configured to collect spa 
tial data from different subterranean locations , 

positioning the measuring device at a subterranean loca 
tion ; 

collecting a plurality of data sets generated from the 
measuring device through a network system ; 

electronically transmitting the plurality of data sets to an 
electronic database system ; 

processing the plurality of data sets by applying a 
machine learning algorithm to generate a real - time 
result about sinkhole detection ; 

transmitting the real - time result to an interface system ; 
and 

updating the electronic database system by transmitting 
the real - time result back to the electronic database 
system . 

18. The method as in claim 17 , wherein the plurality of 
data sets include accelerometer data , gyroscope data , atti 
tude data , and quaternion data . 

19. The method as in claim 18 , wherein the attitude data 
includes at least one of yaw , pitch and roll data . 

20. The method as in claim 17 , wherein the machine 
learning algorithm is selected from the group consisting of 
Artificial Neural Network , Naïve Bayes Algorithm , K - Near 
est Neighbor , Random Forest , and Support Vector Machines . 


